Introduction to String Theory

Humboldt-Universität zu Berlin Dr. Emanuel Malek

Exercise Sheet 6

1 In the lectures on CFT so far, we have been studying conformal field theories defined on the complex plane \mathbb{C} . However, the conformal field theory of the closed string is defined on the worldsheet Σ which is an infinitely-long cylinder, i.e. the coordinates on Σ are $\sigma \sim \sigma + 2\pi$, $\tau \in (-\infty, +\infty)$. In this exercise, you will connect these two pictures. First, perform a Wick rotation of the coordinates such that $\tau \longrightarrow i\tau$ is real and define the complex coordinates on the cylinder

$$w = \sigma + i\tau, \qquad \sigma \in [0, 2\pi). \tag{1.1}$$

(a) Consider the map $z: \Sigma \longrightarrow \mathbb{C}$ from the cylinder to the complex plane defined as

$$z = e^{-iw}. (1.2)$$

Is this a conformal map? Draw lines of constant σ and lines of constant τ in \mathbb{C} . Where are the infinite past $\tau \to -\infty$ and the infinite future $\tau \to +\infty$ mapped to?

- (b) What does the worldsheet Hamiltonian $l_0 + \tilde{l}_0 = \partial_{\tau}$ get mapped to on \mathbb{C} ? What does the worldsheet translation operator $l_0 \tilde{l}_0 = \partial_{\sigma}$ get mapped to on \mathbb{C} ?
- (c) If operators are time ordered on the worldsheet cylinder, what does this imply for their ordering on the complex plane?
- (d) How do primary fields of weight (h, \tilde{h}) on the cylinder transform under the map (1.2) from the worldsheet cylinder to \mathbb{C} ?
- (e) Consider the theory of a free scalar field defined on the cylinder, Σ ,

$$S = -\frac{1}{4\pi\alpha'} \int_{\Sigma} d^2\sigma \,\partial_{\alpha} X \partial^{\alpha} X \,. \tag{1.3}$$

Write the mode expansion for X on the cylinder. As we saw in the lectures, ∂X is a primary field of weight $(h, \tilde{h}) = (1, 0)$. Calculate how ∂X transforms under the map (1.2) to the complex plane. What is the mode expanion of ∂X on \mathbb{C} ?

- **2** (a) Show, using Stoke's theorem, that in two dimensions $\partial^2 \ln (\sigma \sigma')^2 = 4\pi \delta(\sigma \sigma')$.
- (b) Show that Stoke's Theorem in 2 dimensions in complex coordinates is given by

$$\int_{R} d^{2}z \left(\partial v^{z} + \bar{\partial}v^{\bar{z}}\right) = i \oint_{\partial R} \left(v^{z} d\bar{z} - v^{\bar{z}} dz\right). \tag{2.1}$$

- (c) Verify that in complex coordinates $\partial \bar{\partial} \ln |z|^2 = 2\pi \, \delta(z, \bar{z})$.
- **3** Show that : e^{ikX} : is a primary operator for the theory of a free scalar field and compute its weight.

4 A theory of a free scalar field X has OPE

$$\partial X(z)\,\partial X(w) = -\frac{\alpha'}{2}\frac{1}{(z-w)^2} + \dots \tag{4.1}$$

Consider the stress-energy tensor

$$T(z) = -\frac{1}{\alpha'} : \partial X(z)\partial X(z) : -Q \,\partial^2 X(z) \,, \tag{4.2}$$

for some constant Q.

- (a) Compute the TX OPE and determine the transformation of X under conformal transformations.
- (b) Show that ∂X has weight h=1 but is not primary unless Q=0. Show that e^{ikX} : is primary and compute its weight.
- (c) How can it be that the theory of a free scalar field can have different stress-energy tensors?
- **5** Consider a theory of several free, non-interacting scalars, X^{μ} , $\mu = 1, \ldots, D$ with action

$$S = -\frac{1}{4\pi\alpha'} \int d^2\sigma \partial_\alpha X^\mu \partial^\alpha X^\nu \, \eta_{\mu\nu} \,, \tag{5.1}$$

with $\eta_{\mu\nu}$ the Minkowski metric.

(a) Compute the propagator

$$\langle X^{\mu}(\sigma)X^{\nu}(\sigma')\rangle$$
. (5.2)

(b) The stress-energy tensor is given by

$$T(z) = -\frac{1}{\alpha'} : \partial X^{\mu}(z)\partial X_{\mu}(z) : . \tag{5.3}$$

Consider the operators

$$\zeta_{\mu} : \partial X^{\mu} e^{ik \cdot X} : \quad \text{and} \quad \zeta_{\mu\nu} : \partial X^{\mu} \bar{\partial} X^{\nu} e^{ik \cdot X} :,$$
(5.4)

where ζ_{μ} , k_{μ} are constant vectors and $\zeta_{\mu\nu}$ is a constant tensor. What are the conditions for these operators to be primary and what are their weights?

6 A free Majorana fermion in two dimensions has the action

$$S = \frac{1}{2\pi} \int d^2z \,\psi \bar{\partial}\psi + \bar{\psi}\partial\bar{\psi} \,. \tag{6.1}$$

The propagator is given by the OPE

$$\psi(z)\psi(w) = -\psi(w)\psi(z) = \frac{1}{z-w}, \qquad (6.2)$$

and similarly for $\bar{\psi}$. Remember that ψ and $\bar{\psi}$ are Grassman-valued fields, i.e. they anticommute. The energy momentum tensor is

$$T_{zz} \equiv T = -\frac{1}{2} : \psi \partial \psi : . \tag{6.3}$$

- (a) Show that ψ is a primary operator of weight $h = \frac{1}{2}$.
- (b) Compute the TT OPE.